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sional domain subdivided in cells of equal size. Suppose that 

Cell-centered and vertex-centered multigrid methods for solving we have n, cells, GL = 1, 2 in each direction. The unknowns 
interface problems are studied. These methods differ in the location of may be located at vertices of the cells (cf. Fig. la), or at the 
the nodes in the grids and in the transfer operators. It is shown how by 
means of stencil notation a compact and precise description can be 

centers of the cells (cf. Fig. lb). 

given of the transfer and coarse grid operators. A structured FORTRAN 
In the vertex-centered case the computational grid G is 

description of the fundamental multigrid algorithm with only one goto defined by 
statement is presented. Numerical results of several test problems with 
strong discontinuities in equation coefficients are presented. Storage G= {(x1,x2):xI=iZha, i,=O, 1, . . . . n,, 
and work requirements are discussed. 0 1992 Academic Press. Inc. 

h, = LX/n,, tl= 1, 2). 

1. INTRODUCTION 

Multigrid (MG) methods to solve large systems that arise 
from discretizing elliptic partial differential equations have 
two main components: coarse grid approximation and 
smoothing. In problems with interfaces (discontinuous 
diffusion coefficients), vertex-centered coarsening together 
with standard bilinear interpolation leads to inaccurate 
coarse grid approximation, resulting in deterioration of the 
rate of convergence. In [ 1, 2, 4-91, vertex-centered MG 
methods with matrix-dependent transfer operators are 
presented. Such methods have a good rate of convergence 
but need more storage and preparation time per iteration 
(calculation of transfer operators) than standard MG. A 
new method has been developed in [ 10, 12, 131, based on 
cell-centered coarsening and simple interpolatory transfer 
operators, for which the cost per iteration is the same as for 
standard MG. In this paper we give an evaluation of the 
performance of the two kinds of methods for several difficult 
test problems. 

2. CELL-CENTERED AND VERTEX-CENTERED 
COARSENING 

In the cell-centered case G is defined by 

G= ((xl, x2) : x, = (i, - 4) h,, i, = 1, . . . . n,, 

h, = L,/n,, a = 1, 2). 

To each case there corresponds a coarsening which charac- 
terizes the corresponding multigrid method: 

~ Vertex-centered multigrid (MGVC) associated 
with vertex-centered coarsening. 

~ Cell-centered multigrid (MGCC) associated with 
cell-centered coarsening. 

In this section we need to consider only two grids, called 
G and (7; ; indicates a coarse grid quantity. Let n, be even. 

2.1. Vertex-Centered Coarsening 

The coarse grid c is selected as follows: 

G= {x=(x ,,~~):x,=i,h,,i,=O, l,..., %, 

h, = 2h,, ii, = n,/2}. 

There are basically two ways to construct coarse grids This means that (? is obtained from G by deleting every 
in multigrid methods. Suppose that we have a two-dimen- other vertex in each direction (cf. Fig. 2a). 
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a b 

Coarse 

FIG. 3. Cell numbering in two dimensions. 

FIG. 1. a. Vertex-centered grid; b. cell-centered grid. 
volume discretizations as described in [ 10, 11, 131. The 
resulting system on the finest grid has a matrix A with live 
non-zero diagonals. 

2.2. Cell-Centered Coarsening 
3.2. Stencil Notation 

The coarse grid G is selected as follows: 

G= x=(x,,x2):x,= 

We will make use of the following stencil notation. Let the 
grids be G’, G2, . . . . GM, with G’ the finest grid and GM the 
coarsest grid. Let the space of grid functions on Gk be 
denoted by Qk: Gk + R. With Ak: Gk + Qk, the stencil 
representation of Akdk is defined by 

(Akdk)i= 1 Ak(i, j) df+jy iEGk, (3.2) 
G is the set of coarse grid cell-centers where each coarse cell jeZd 

is the union of four line cells (cf. Figs. 2b and 3). 
where d is the dimension of Gk (here d = 2). The set of values 

3. EQUATION AND STENCIL NOTATION 

3.1. Equation 

SAk = {Jo Zd: Ak(i, j) #O, for some iE.Gk}, (3.3) 

is called the structure of Ak. The stencil [Ak] of Ak is 
We consider the following two-dimensional diffusion defined in the usual way. For example, if Ak has the familiar 

equation with discontinuous and/or anisotropic coefficients: five-point structure, we have 

Ak(i, e2) 

Ak(i, -e,) Ak(i,O) Ak(i,e,) , 

Ak(i, -e2) 1 
and boundary condition 

where e, = (1,0) and e, = (0, 1). 

bg+c(=g, bb0, cz0, b+c#O, on &2, (3.lb) 
With Rk: Qk ~ ’ + ok a restriction operator the stencil 

representation of Rkdk ~ ’ is defined as 

where n is the outward normal to the boundary. D,, f, 
g, 0, b, and c are given functions. D, and r~ may have strong 

(Rkdk-‘), = c Rk(i, j) &,>. (3.4) 
,ELd 

discontinuities across internal interfaces. We use finite 
Define the inner product on Qk by 

a b 
(3.5) 

8 8 

cu 

(4k, $“I = c ef+t. 
iEZd 

If i $ Gk the corresponding grid function values are defined 
to be zero. With this inner product, one finds, for the adjoint 

8 8 Rk,‘: @k --) #jk- 1: 

(Rk**dk)i = c Rk(j, i- 2j) 4;. (3.6) 
FIG. 2. a. Vertex-centered coarse grid; b. cell-centered coarse grid. jeZd 
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From the preceding equation follows the stencil notation for 
Pkdk + ’ for prolongation operators Pk: Qk + ’ + CDk: 

(pkq5k+1)i= C Pk,*(j, i-2j)#F+‘. 
jehd 

(3.7) 

4. MULTIGRID ALGORITHM 

Let the discrete line grid problem to be solved be denoted 
by 

Ad=f. (4.1) 

We present a simple well-structured FORTRAN descrip- 
tion, using only one goto, of the fundamental MG algorithm 
(correction variant, V-, F-, or W-cycle), see [12]. 

Subroutine MG(& f) 
k=l 
ic( 1) = maxit 
if (V-cycle) then y = 1 else y = 2 

10 if (ic(l).gt.O) then 
if (ic(k).eq.O.or.k.eq.M) then 

if (k. eq . M) then 
call S(d”, f”) 
ic( M) = it(M) - 1 
if (F-cycle) y = 1 

endif 
k=k-1 
$P=@+pk(/$k+’ 
call S(#k, f") 
it(k) = it(k) - 1 

else 
call s(fjk, f") 
f k+l =Rk+l (fk-Akdk) 
k=k+l 
c$“=o 
it(k) = y 

endif 
if (k.eq. 1 .and.F-cycle) 7 = 2 
got0 10 

endif 
end. 

k = 1 :finest grid 
maxit : number of MG iterations desired 
it(k) : counter of MG cycles on grid k 
k = M : coarsest grid 

Tk 
: smoothing subroutine 
: right-hand side on grid k 

4” :correction (k > 2) or solution (k = 1). 

5. TRANSFER OPERATORS 

5.1. Transfer operators for MGVC 

In vertex-centered multigrid for interface problems, 
matrix-dependent transfer operators have to be used. 
Several definitions of such operators have been given 
[ 1, 2, 4-91. Here we restrict ourselves to the “collecting” 
matrix dependent operators proposed in [ 1,2]. They can 
be conveniently described by the stencil notation introduced 
in Section 3. Pq3 is represented as (cf. (3.7)) 

(P&= 1 P*(j, i- 2j) QT,, iEG, (5.1) 
JEZd 

where we drop the superscript k for convenience and 
indicate coarse grid quantities by an overbar. P is defined by 
the stencil [P*li. 

Lete,=(l,O),e,=(O, l),ande,=(l, l)(=e,+e,).The 
vertex i E C coincides with the vertex 2i E G (Fig. 4). We 
define 

and 

tpd)2i = di 

P*(j, i-2j)=O for Ii, - 2j,l > 1, a = 1, 2. (5.2) 

In other words, we have interpolation between nearest 
neighbours only. Using (5.1) we see immediately that 

P*(i, 0) = 1. (5.3) 

For the grid points 2i + e,, a = 1, 2, P is defined as 
follows: Let [Ali be given by 

[ 

A(i, -e, + e2) A(i, ez) A(j, es) 

L-Al,= Ati, -el) A(j, 0) A(i, e,) 

A(& -e3) A(i, -e2) A(i, e, -ez) 1 . (5.4) 

Let C be a matrix which is A or a slight modification of A 

2i+e2 
FF! 

2ite3 

I 
2i 2ite, 

FIG. 4. Indices of grid points. 
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as defined below. By summing the columns of [Cl,, we For k=2i+e,, 1 can take the values i, i+e,, i+e,, and 
obtain the operator H defined by i + e3 only. By substitution of these values of 1 in (5.13) we 

obtain the expressions for the remaining elements P*(i, e) 

H(i, (a, 0)) = i C(i, (u, B)), cx= -l,O, 1. (5.5) with e = (a,, Q) and llell = /cl, 1 + lclzl = 2: 

fl= --I 

By summing the rows of [Cl, we obtain the operator V 
P*(i,e)= _Cj:llj+eli~IC(2i+e,j)P*(i,j+e) (514) 

C(2i + e, 0) 
. 

defined by 
The elements of P* occurring in the right-hand side are 

Vi, (0, B)) = i C(i, (a, B)), j?= -l,O, 1. (5.6) 
defined by (5.2), (5.3), (5.9) (5.10) and (5.11). The restric- 

a=-1 
tion operator will be defined by 

For grid point k = 2i + e, , we define P$ by 

(H(Pi)), = 0. 

R=P*. (5.15) 

(5.7) 
We will choose C in two ways: 

(1) C=A (5.16) 
Using (5.7), (5.1), and (5.2) we have, after some manipula- 
tion (cf. [lo]), as proposed in [l, 2,4, 7-91. The transfer operators 

following from this choice will be called type A. 

P*(l, k - 21) 

= - a;o H(k, (a, 0)) P*(l, k + (a, 0) - 2Z)/H(k, 0), 

(2) C(i, j) = A(i, j) for j#O (5.17a) 

and (cf. [S]) 

We obtain 

P*(i+e,, -e,)= - 
H(2i+e,, el) 
H(2i+e,,O)’ 

We deduce 

k=2i+e,, l=i or i+e,. (5.8) 

P*(i, e,) = - 
H(2i+e,, -e,) 

H(2i+e,, 0) ’ 
(5.9) 

- 1 A(i, j), if c A i, . 

C(i, 0) = j#O 

1 
J 

( J)/C A(i, i)i <lop’ 
/+o 

A(i, 01, otherwise, (5.17b) 

where p is an integer to be chosen. The transfer operators 
related to this choice of C will be called type B. 

5.2. Transfer Operators for MGCC 

5.2.1. Restriction 

P*(i, -e,)= - 
H(2i-e,, e,) 
H(2i-e,, 0)’ 

(5.10) In the interior of the domain the restriction operator R is 
the (scaled) adjoint of linear interpolation in triangles. 

Using the same method, we deduce for the grid point 
Interpolation takes place in triangles such as HKF and 
HEF (Fig. 5). The resulting stencil is 

2i+e,: 

P*(i, e2) = - 
V(2i+e,, -e2) 

V(2i+e,, 0) ’ 
(5.11) 

P*(i, -e,)= - 
V(2i-e,, ez) 
V(2i- e2, 0) 

1100 

[RJ=h :, ; ; ; . [ 1 (5.18) 

0011 

For the points k = 2i + e3, we define P$ such that H K 

x x 
(c(m), = 0. (5.12) 

This gives 
@ 

x x 

E F 

P*(Z,k-21)= - c C(k,j)P*(Z,k+j-2f)/C(k,O). (5.13) FIG. 5. Interpolation for adjoint of restriction; x : center of he cells; 

i#O l : center of coarse cells. 
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At boundaries this stencil has to be modified because some with 2m the order of the partial differential equation to be 
elements of this stencil refer to points outside the grid. For solved. The above restriction has mR = 2. It is therefore 
pure Neumann boundary conditions, when the solution is sufficient here to take an interpolation P with mp = 1. We 
determined up to a constant, nice properties to have are define P by 
(cf. [6]): r. .7 

R*F = e, Re=F (5.19) [P*],= f ; 
1 J 

(5.23) 

where e and t? are grid functions which equal one everywhere Hence 
on the line and coarse grids, respectively. The resulting 
restriction operator will be used regardless of the type of (P&2;+, = Ti for iEG, @S,*={-LO}? 
boundary condition given. 

It is found that a suitable boundary modification of the When R is replaced by 1/4p* and p by 4R* the behaviour 
stencil of R satisfying (5.19) is obtained by the following of the method remains about the same. 
rule: elements to be deleted because they refer to function 
values outside the domain are added to the nearest 6. COARSE GRID OPERATORS 
neighbour in the “north-west/south-east direction.” This 
leads to the following stencils at the west boundary, north- In this section we need to consider only two grids. Coarse 
west corner, and south-west corner, respectively: grid quantities are denoted by an overbar. The coarse grid 

operator d is defined by 
0 1 0 0 

IN,=& ; ; ; !f , [ 1 A=RAP. (6.1) 

0011 In the following we give a method for the computation of A 
in the case of MGVC and MGCC. Using (3.2) and (3.7) we 

0 0 0 0 

[ 1 
obtain 

IRli=i ; ; ; ; > (5.20) 
W&i= c A(i, W’&;+, 

0011 k 

0 1 0 0 =xA(i,k)xP*(j,i+k-2j)$j (6.2) 

[RJ=i ; ; ; ; . [ 1 k i 

and using (3.4) we derive, after some manipulations [lo], 
0 0 0 0 

The situation at other boundaries and corners follows from 
A(i, j) = 1 c R(i, m) A(2i+ m, k) 

m k 

these examples. In general, R has the following stencil: x P*(i + j, m + k - 2j). (6.3) 

0 0 
4-w3,i-e3,i 0 1 In order to determine the storage required, we have to 

4 - e2.i 
. (5.21) compute the set 

e3.i 

Lo 0 e1.i e2. i I S,=(j~Z”:A(i,j)#Oforatleastonei~f?}. (6.4) 

The values of ear and w,, c1= 1,2,3,4, depend on the 
position of point i relative to the boundaries, in the way just 
discussed. 

In multigrid methods P and R must satisfy the following 
requirement. Let mp - 1, mR - 1 be the maximum degree of 
polynomials that are interpolated exactly by sP or tR* 
respectively for some real value of s or t. Then we must have 
C3,61 

m,+m,>2m, (5.22) 

This is done by the following algorithm: 

ALGORITHM structure. 
S,=@ 
formESRdo 

forkESAdo 
for p E S,.. do 

begin j = (m + k - p)/2 
if jEZ”tbenS,-=Snu {j} 

end. 
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Given S,-, the following algorithm computes A: 

ALGORITHM RAP. 
A( i, j) = 0 
for jeSddo 

formESRdo 

where (temporarily) i, Jo Z. It is found that if R is given by 
(5.21) and P by (5.23), then 2 = RAP is given by 

3 (6.9) 

forkES, while (m+k-2jeSp,)do 
foriEGwhile(2i+mcGandi+jE%)do 

A(i, j) = A(i, j) + R(i, m) A(2i+ m, k) 
P*(i+j,m+k-2j). 

where 

Eij= teltcr + Y + d))2i,2j-2 + te*Y)2i+ 1,2j-- 2 

+ ((4-e, - WI)(~ + B))2;- l,Zj- l + ((4 - e2) cr)2i,2j- I 

The inner loop does not allow vectorization because of (6.10.1) 

the while clause. We therefore replace the last two lines by 
Bij=(e1(/3+&))2i,~j-2+ (e2(C(+P+6+&))2~+l,2j-2 

+ ((4 - e2) D)Zi,2j- I + (eda + 8))2i+ 1,2/- 1 (6.10.2) 
G,= (iEG:2i+mEG} 

((jJ) Y,=((4-e -w )(y+q)) .p,,2,-1 +(wl(ct+y+6)),,_ 1 1 21 2.21 
G2= {id: i+jd} (6.6) + (t4 - w2) YIZi- 1.2, + (w2a)2i-2,2j+ 1 (6.10.3) 

G,=G,nG, (6.7) 

for iEG3do 
J(i,j)=A(i,j)+R(i,m)A(2i+m,k) 
P*(i+ j,m+k-2j). 

The inner loop vectorizes along grid lines. 
This algorithm is completely general. It covers cell-cen- 

tered and vertex-centered multigrid and matrix-dependent 
P and R. Notice that in cell-centered multigrid, the algo- 
rithms can be simplified because P*(i, j) = 1, j E S,* . 

To illustrate the computation of G, we give an example in 
two dimensions. Let G and G given by 

Jjj= (el(s + 1))2i,Zj-2+ (e2V)2i+l,2jp2 

+ ((4 - el - w,)(d + E + 1))2i- 1,21- 1 

+((4-~2)(Y+~+~+1))2r.2j-l+(e3(Y+?))2~+l,2j-I 

+ (wl(B + &))2i-2,2j + ((4 - w2)(a + B + 6 + &))2;- 1,2j 

+ ((4--e,- w3)(a+y+d))2i,zj+ (W2PL2,2i+ 1 

+ (w3(u + B))2r- 1,2j+ I (6.10.4 

El,= (e21)2i+1,2,-2+ ((4-e2)&)2i,2i-~ 

+ (e,(h + E + 1))2,+ 1,2/- I + ((4-e3-w3)(B+ &))2i,2j 

(6.10.5 

1 

1 

qij= (wl(U + i))Zi-2,2~ + ((4- w2) V)2i- 1,2/ 

+ (WAY + 6 + ‘I + 1)L2.2,+ 1 + (W,(Y + ?))2i- 1,2./+ 1 

(6.10.6) 

i;,= ((J-W,) i)2ip1,2j+ ((4-e3-W3)(ll +1))2i,Zj 

+ (wZE)Z;-~.~~+ I+ (w3(8 +E+ 1))2i- 1,2,+ 1’ (6.10’7) 

G= {i=(i,,i2):O~il~2nxc,0~i,~2nyc}, 

where i E G, is equivalent to 

m=(m,,m,)ESR, j = (il > j2) E s.2 As R # P*, symmetry is not conserved in general. Let US 

max -jl, --, y1 0)4i,~min(nxc-~,nlc-j,,nXC) considerthespecialcase~ o ii, o 

), 3 
<i2<min 

[A]ij= YU 6, ‘4 [ 1 (6.11) 

0 uii 0 

In the cell-centered case it is simple to give d explicitly. Let with olii= ii,+ l, yii= E,- 1-j (symmetry) and (CL + Y + 6 + 
A be given by E + oii = 0 in the interior cells. Then we have vii [ yii iii 0 1 0 rij 0 CAlii= 6, Q , (6.8) [Al,= Yj, sy Eij (6.12) 

0 %j Bii [ 1 0 a, 0 



VERTEX-CENTERED AND CELL-CENTERED MULTIGRID 

with 

~ii=(~,,-,,2j-~+~2r,2,--1)/8 (6.13.1) 

Yzj= (~2;~ 1,2j- 1 + ~2i- ,.2j)/8 (6.13.2) 

Eij = (~2;. 2, + E2i, 2j ~ I J/8 (6.13.3) 

Cl, = (i2i- 1.2, + 12i,2j)P. (6.13.4) 

At boundaries and corners, Eii, vii, Eij, and [q are obtained 
in the same way, by substitution of the corresponding values 
of e, and w, in (6.10.1), (6.10.3), (6.10.5), and (6.10.7), 
respectively. 

It is found that if A is given by (6.11) and if 

(a+y+6+E+i)jj=S (6.14) 

with s constant in all (interior, boundary) cells, then A is 
symmetricand (tL+y+s+E+[),=.s. 

In order to make A as sparse as A, and in order to have 
A symmetric even when (6.14) is not satisfied, the coarse 
grid matrix definition is modified as follows. We split A as 

A=B+S, (6.15) 

where C is defined by 

B(i, j)=A(i, j) for j#O 

B(i,O)= - 1 A(i, j). 
i#O 

(6.16) 

The coarse grid matrix is defined by 

A=RBP+S 
with 

(6.17) 

S(i,O)=a{S(2i,O)+S(2i-e,,O) 

+S(2i-e,,O)+S(2i-e,,O)}, 

where e, , e2, and e3 are defined as in Section 5.1. 

(6.18) 

7. NUMERICAL EXPERIMENTS 

In this section we use the vertex-centered multigrid 
method with matrix-dependent transfer operators and the 
cell-centered multigrid method to solve three special cases 
of (3.1). In all tests W-cycles are used. For test problem 1 the 
V-cycle is also used. We use one presmoothing and 
one postsmoothing by the symmetric (forward-backward) 
point Gauss-Seidel method, or the alternating zebra 
method (line-Gauss-Seidel, ordering the lines in a zebra 
pattern, using lines in both directions) when anisotropy is 
involved. The coarsest grid consists of 1 x 1 or 3 x 3 cells 
in the cell-centered case and 2 x 2 or 3 x 3 vertices in the 

D=2 DE1 t-J-10 D=2 

9 n2 n3 

w w+a 

FIG. 6. Subdivision of .Q and diffusion coellicients for problem 1. 

vertex-centered case. The solution method on the coarsest 
grid is a direct method using QR decomposition. When 
on the coarsest grid the system is singular, we take the 
solution 4 = 0 on a 1 x 1 grid; on other grids, we replace one 
equation i of the system by di = 0. The results of the tests 
are collected in the tables given later. The quantities listed in 
the tables are the reduction factors K, defined by 

IIr(y’II 2 
Ic= Ilr(v-1’~12’ v3 1, 

TABLE Ia 

Results for Test Problem 1, 
Cell-Centered Multigrid 

(7.1) 

h w 

W 0.6250 
l/12 0.5833 
l/16 0.5625 
l/24 0.5417 
l/32 0.5313 
l/48 0.5208 
l/12 0.5833 
l/16 0.5625 
l/24 0.5417 
l/32 0.5313 
l/48 0.5208 

MGCC, W-cycle MGCC, V-cycle 

a ” 

l/S 5 0.075 0.061 6 0.128 0.079 
l/6 5 0.071 0.055 5 0.082 0.061 
l/8 6 0.135 0.08 1 9 0.320 0.204 
l/8 5 0.70 0.048 6 0.148 0.092 
l/8 5 0.065 0.046 9 0.338 0.196 
l/8 5 0.064 0.045 12 0.477 0.306 
h 6 0.094 0.072 6 0.142 0.095 
h 7 0.182 0.109 10 0.364 0.243 
h 9 0.322 0.196 15 0.535 0.394 
h 11 0.432 0.276 20 0.638 0.497 
h 16 0.579 0.410 29 0.750 0.620 

K ii Y K 

TABLE Ib 

Results for Test Problem 1, 
Vertex-Centered Multigrid 

MGVC, W-cycle 

h w a Y K i Y K I? 

l/10 0.6000 l/l0 6 0.099 0.09 1 6 0.099 0.091 
l/14 0.5714 l/7 6 0.086 0.076 6 0.114 0.092 
l/18 0.5556 119 6 0.091 0.086 6 0.108 0.097 
l/26 0.5385 3126 6 0.104 0.094 7 0.148 0.123 
l/34 0.5294 2117 6 0.098 0.089 7 0.172 0.121 
l/50 0.5200 3125 6 0.099 0.090 7 0.171 0.123 

MGVC, V-cycle 
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L 

n3 n4 

W 

H 

“1 R2 

0 W L 

FIG. 7. Subdivision of Q. 

where r(“) is the residual at the iteration v (Y(“) = f - A#")) 
and the average reduction factor E is defined by 

(7.2) 

Of course, K and K depend not only on the multigrid method 
used, but also on v,A and 4 (‘) However, it was found that . 
in many cases K tends rapidly to the spectral radius. We take 
v such that KY < 10P6. In cases where the methods converge 
well, the value of K thus obtained is not far from the spectral 
radius. 

Two positions of the interfaces will be considered: 

- Case 1. Interfaces are midway between two mesh 
lines; 

- Case 2. Interfaces are mesh lines. 

Note that in Case 1 (resp. Case 2) diffusivities across inter- 
faces are the harmonic (resp. arithmetic) average of the dif- 
fusion coefficients in the adjacent cells in the vertex-centered 
case. In the cell-centered case, the arithmetic average is used 
in Case 1 and the harmonic average in Case 2. 

TEST PROBLEM 1 [ll, 133. The domain is the unit 
square discretized into cells of size h, h = l/n. The diffusion 
coefficients D, in (3. la) are given in the subdomains (Fig. 6) 

TABLE III 

Results for Problem 2, Case 1 

MGVC MGCC 

L w v K K I’ ha h: 

8 5.5 I 0.113 0.114 13 0.337 0.340 

12 7.5 I 0.111 0.112 12 0.304 0.314 

16 9.5 7 0.106 0.107 14 0.343 0.360 

24 13.5 7 0.104 0.104 14 0.330 0.356 
32 17.5 7 0.103 0.103 15 0.343 0.374 

64 33.5 7 0.103 0.103 15 0.340 0.386 

xi = o and x1 = o + a are interfaces (lines of disconti- 
nuities) with a the width of the band Q2,. D, is defined by 

D,=D= 
2 for (x,, xz)~Qg, p=land3, 
lO-‘O for (-~,,xd~Q,, z= 1,2. 

The right-hand side is f (.x1, x2) = x,x2, and 0 = 0. We take 
a Dirichlet boundary condition (b = 0, c = 1 in (3.lb)) with 
g(x,, x2)=x:+x:. The results of the computations in 
Case 2 are given in Tables I. Results for Case 1 are nearly 
the same as for Case 2 and are not reported here. 

The values of h in the vertex-centered case are slightly 
different from those in the cell-centered case because in 
the vertex-centered case the Dirichlet boundaries have been 
eliminated, resulting in a number of meshes in each direc- 
tion which is a small integer times a power of 2, plus 2. 

The results are found to depend very little on the value of 
o. MGVC with the W-cycle needs about the same number 
of iterations as MGCC with the W-cycle, for a E $. For 
a = h the rate of convergence of MGCC deteriorates with 
l/h. This is thought to be due to the fact that, as suggested 
by A. Brandt (private communication), according to (6.13) 
the isolation between the regions separated by the vertical 
strip may disappear after two coarsenings, depending on the 
value of o. Nevertheless, convergence of MGCC is still 
rapid; see [ 11, 131. In a physical application a is expected 

Q, = CCXl? x,):O<x, <o,Odx,d I>, 

Q, = 1(x l,~~,):o<x, <o+a,Odx,< I}, 

Q, = {(x,3 x,):o+a6x,d1,06x,61}; 

TABLE IV 

Results for Problem 2, Case 2 

MGVC MGCC 

TABLE II L w Y ti K Y K I? 

D andffor Test Problem 2 8 58 0.121 0.139 9 0.182 0.196 
12 7 8 0.121 0.146 9 0.197 0.212 

52, -Q, Q3 Q4 16 9 8 0.123 0.150 9 0.196 0.213 
24 13 8 0.124 0.157 10 0.207 0.226 

D 1 lo3 10’ 1 32 17 8 0.123 0.161 10 0.210 0.233 
f 0 1 1 0 64 33 8 0.121 0.169 11 0.228 0.256 



VERTEX-CENTERED AND CELL-CENTERED MULTIGRID 

TABLE V 

Diffusion Coefficients for Problem 3 

not to depend on h, of course. The rate of convergence of 
MGVC is found to be insensitive to the value of a (results 
not shown here); the subregions remain isolated on coarse 
grids. 

With the V-cycle, MGVC needs hardly more iterations 
than with the W-cycle, but the rate of convergence of 
MGCC becomes h-dependent. This is thought to be due to 
the fact that the cell-centered transfer operators satisfy 
mp + mR = 3 (cf. (5.22)), whereas in the vertex-centered case 
mp + mR = 4. Hence, the coarse grid operators are less 
accurate in the former case. Therefore we use only the 
W-cycle from now on. 

For test problems 2 and 3 we define the following sub- 
division of the domain: 

Let !Z2 = [0, L] x [0, L], L given. Let Q be subdivided in 
four subdomains 52,, i = 1, 2, 3, 4 (Fig. 7). Here o designates 
the location of the interfaces in the x1 or x2 direction. 

TEST PROBLEM 2 [4]. For this problem D, and D, in 
(3.la) are taken equal to D; f and D are discontinuous 
across the internal boundaries of Qj, i= 1, 2, 3,4, and are 
defined in Table II. Furthermore, 0 = l/30. The boundary 
conditions are defined as 

%=o 
an 

for x,=0 or x,=0 

g+&p=o for x,=L or x2 = L. 

Table III gives results for Problem 2 in Case 1 for MGVC 
and MGCC for various values of L, taking h = 1. The 

TABLE VI 

Results for Problem 3a, Case 1 

MGVC MGCC 

h w L' h' h: v K K 

l/8 0.6875 4 0.011 0.015 6 0.098 0.097 
l/12 0.6250 4 0.010 0.011 6 0.111 0.073 
l/16 0.5938 4 0.023 0.018 6 0.112 0.093 
l/24 0.5625 4 0.029 0.020 7 0.136 0.117 
l/32 0.5469 4 0.033 0.02 1 7 0.147 0.118 
l/64 0.5234 4 0.044 0.028 7 0.145 0.115 

TABLE VII 

Results for Problem 3a, Case 2 

MGVC MGCC 

l/8 0.6250 4 0.011 0.016 5 0.050 0.042 
l/12 0.5833 4 0.014 0.013 6 0.041 0.071 
l/16 0.5625 4 0.025 0.023 6 0.142 0.095 
l/24 0.5417 4 0.029 0.024 7 0.123 0.112 
l/32 0.5313 4 0.033 0.025 7 0.137 0.111 
l/64 0.5156 4 0.046 0.037 6 0.154 0.100 

smoother used is the symmetric point GausssSeidel method. 
We see that MGVC is two times faster in number of itera- 
tions than MGCC. 

Table IV gives results for Problem 2 in Case 2. In this 
case MGCC is slightly slower than MGVC. For both 
methods, the reduction factors are independent of h. 

TEST PROBLEM 3 [S]. This is a two-dimensional version 
of the three-dimensional problem (4.4) reported in [S]. For 
this problem L = 1 and Di, i = 1, 2, are given in Table V. 
Problem 3a will refer to the case where unit sources of 
opposite sign are present at the “south-west” and “north- 
east” corner cells, and r~ = 0. Problem 3b will refer to the 
case where a unit source is present at the “south-west” 
corner cell only, and c = 10p4. Problems 3a and 3b have 
homogeneous Neumann boundary conditions. 

Tables VI and VII give results for Problem 3a for Case 1 
and Case 2. The rate of convergence is independent of h. 
MGVC is about two times faster than MGCC. Many 
different values of o were tried, with similar results. 

Tables VIII and IX give results for Problem 3b in Case 1 
and Case 2. We have the same conclusions as for 
Problem 3a, except that when h goes to zero we need to use 
transfer operators of type B instead of type A for MGVC, 
since type A gave divergence. 

TABLE VIII 

Results for Problem 3b, Case 1 

MGVC MGCC 

h w v K h: v Ii h- 

l/8 0.6875 3 0.003 0.005 6 0.097 0.085 
l/12 0.6250 3 0.009 0.007 6 0.106 0.07 1 
l/16 0.7188 3 0.011 0.005 6 0.121 0.09 1 
l/24 0.6458 3 0.015 0.007 6 0.139 0.089 
l/32 0.6719 4” 0.025 0.017 6 0.153 0.100 
l/64 0.6484 4” 0.048 0.031 7 0.134 0.107 

u Operator type B used with p = 3. 
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TABLE IX 

Results for Problem 3b, Case 2 

KHALIL AND WESSELING 

TABLE XI 

Preliminary Work 

MGVC MGCC 

h 0 ” K E Y K l? 

118 0.6250 3 0.007 0.009 4 0.085 0.029 
l/12 0.5833 3 0.009 0.009 6 0.055 0.074 
l/16 0.6875 3 0.008 0.006 7 0.096 0.104 
l/24 0.6250 4 0.019 0.012 7 0.130 0.112 
l/32 0.6563 4” 0.026 0.023 6 0.131 0.099 
l/64 0.6406 4” 0.049 0.040 6 0.148 0.095 

” Operator type B used with p = 3 

8. STORAGE AND PRELIMINARY WORK 

In this section estimates are presented of the storage and 
preliminary work requirements of the two methods. The 
preliminary work consists of the computation of the coarse 
grid matrices and, for the vertex-centered method, of the 
transfer operators. We consider only the coarse grids, as on 
the tine grid the storage requirement is nearly the same for 
the two methods. 

Table X gives the number of reals to be stored divided by 
the number of grid points of the finest grid. The total num- 
ber of coarse grid points is assumed to be i + & + . . . N i 
times the number of grid points on the finest grid. Pointer 
calculations are neglected. In the symmetric case, the coarse 
grid matrices have five-point stencils, using (6.17) in the 
cell-centered case. 

Table XI gives the preliminary work, counting operations 
( + and *) per coarse grid point. In the cell-centered case the 
fact that P*(i, j) = 1 is exploited, and in column (d) the fact 
that ei = wi = 1 in the interior has been used. 

9. CONCLUDING REMARKS 

The numerical tests show that MGVC is robust for inter- 
face, anisotropic, singular, and nearly singular problems. 

TABLk X 

Reals to Be Stored Divided by Number of Grid Points 

on the Finest Grid 

Vertex-centered Cell-centered 

General Symmetric General Symmetric 

Coarse matrices 3 513 713 1 
Transfer operators 813 813 0 0 

Vertex-centered Cell-centered 

(a) (b) (cl (a) (d) (e) 

Coarse 169+ 96+ 64+ 70+ 63+ 8+ 
matrices 338 * 111 * 67* 70: 14* 5: 

Transfer operators 24* 16+ 

Note. (a) Using Algorithm RAP of Section 6; (b) using explicit expres- 
sions in [2]; (c) as (b), for the symmetric case; (d) using explicit expres- 
sions (6.10); (e) using explicit expressions (6.13) (6.17) (6.18) for the 
symmetric case. 

For certain nearly singular problems poor convergence and 
even divergence may occur when transfer operators type A 
are used. This is cured by using the transfer operators 
type B. MGCC also handles these problems well, but may 
require more iterations than MGVC. 

We note the simplicity of the implementation of the 
restriction, prolongation, and Galerkin coarse grid approx- 
imation for MGCC. The amount of preliminary work and 
storage required is smaller in the cell-centered case than 
in the vertex-centered case. 
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